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Abstract
We study one-loop effects for massless Dirac fields in two spatial dimensions,
coupled to homogeneous electromagnetic backgrounds, both at zero and at
finite temperature and density. In the case of a purely magnetic field, we
analyze the relationship among the invariance of the theory under large gauge
transformations, the appearance of Chern–Simons terms and of different
Berry’s phases. In the case of a purely electric background field, we show
that the effective Lagrangian is independent of the chemical potential and of
the temperature. More interesting, we show that the minimal conductivity, as
predicted by the quantum field theory, is the right multiple of the conductivity
quantum and is, thus, consistent with the value measured for graphene, with no
extra factor of π in the denominator.

PACS numbers: 11.10.Wx, 02.30.Sa, 73.43.−f

1. Introduction

Planar electrodynamics, i.e. electrodynamics in two spatial dimensions, has attracted attention
for years, mainly due to its theoretical departure from what we are used to in three spatial
dimensions—for two reviews of the subject, with emphasis on Chern–Simons terms, and many
relevant references see [1, 2]. A pedagogical introduction to planar electrodynamics can be
found in [3].

In turn, more than 20 years ago, it was shown that, in the tight-binding approach, the
effective theory at low momenta for a two-dimensional lattice of carbon atoms (which is now
known as graphene) is nothing but a theory of massless Dirac fields in a (2+1)-dimensional
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Minkowski spacetime, in a reducible representation of the Clifford algebra (each irreducible
representation corresponding to one Dirac point or valley) and with two fermion species,
representing the spin of the interacting electrons [4, 5].

Stable monolayer samples of graphene were first isolated in 2004 [6]. The measurements,
in 2005, of the Hall conductivity in these samples confirmed that massless planar quantum
electrodynamics is adequate for describing the effective behavior of quasi-particles in graphene
[7]. The special, unique form for the conductivity of graphene, its many potential applications
as well as the link that graphene establishes between a relativistic field theory and a condensed
matter system, have triggered, during the last few years, a huge amount of work, both
experimental and theoretical, on the subject—for a recent review, see [8].

In [9], we studied planar spinor electrodynamics at finite temperature and particle density,
in the case of massless Dirac quantized fields in the presence of a homogeneous magnetic
background. To this aim we evaluated, in the zeta function regularization approach [10], the
one-loop effective action of the three-dimensional Euclidean theory, at finite temperature and
in the presence of a real chemical potential. From such a result, we obtained the mean particle
density, or equivalently the net charge, as a function of the temperature and of the chemical
potential. The zero temperature limit of this charge, followed by a Lorentz boost, allowed us
to obtain the Hall current as a function of the chemical potential. In particular, the behavior
of the Hall conductivity around zero chemical potential was shown, in the same reference,
to depend on the selection made for the so-called phase of the Dirac determinant [11] (for
a discussion of this point, see also [12]). The present paper is a natural continuation of our
previous work on the subject. Indeed, here we will study one-loop effective actions in the
presence of those particular classical configurations characterizing the relevant experimental
setups.

In sections 2 and 3, we present some basic conventions and calculations needed to study
the massless theory in a purely magnetic homogeneous background, this time for a general
complex-valued chemical potential. The introduction of an imaginary part in the chemical
potential will allow us to discuss, in sections 4 and 5, the invariance of the effective theory
under ‘large’ gauge transformations, their interpretation as 4π rotations and the relationship
among different phases of the determinant, the appearance (or lack thereof) of geometric
phases at finite temperature as well as their interpretation as Chern–Simons terms or Berry’s
phases [13] in the zero temperature limit. These points were briefly discussed by two of us in
the proceeding issue [14]. Here, we present a more detailed analysis of these topics.

Sections 6–8 treat the complementary case of a purely electric constant background field,
both at zero and at non-vanishing, temperature and chemical potential. In section 6, we use the
Bogoliubov transformation method to study the vacuum persistence probability, determined
by the imaginary part of the effective action at zero temperature, in the (2+1)-dimensional
Minkowski spacetime. We obtain the probability of vacuum decay and show that, as expected
for massless particles, it is far from being small. In section 7, we evaluate, through zeta
function regularization, the effective action for the same background at finite temperature. We
show that, in this case, the net charge is zero at all temperatures (equivalently, the effective
action is independent of the chemical potential, whether real or complex). We also show that,
in going back to Minkowski spacetime, the imaginary part of the effective action coincides, at
all temperatures, with that obtained in the previous section in the zero temperature case.

The most impressive result in this paper is probably that contained in section 8, where
we evaluate, through the introduction of an adequate Lagrange multiplier, the mean current in
the presence of a constant electric field. We show that such a calculation predicts a minimal
conductivity which, at variance with many of the different results presented in the literature
(see, for instance, [15, 16]), is compatible with the measurements presented in [8]. Finally,
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section 9 contains our main conclusions, while the appendix presents a short overview of the
main properties of the parabolic cylinder functions, needed to follow our calculation of the
probability of vacuum decay at zero temperature.

2. Dirac field interacting with a constant magnetic background at zero temperature

In this section, we use the 2+1 Minkowski spacetime metric gμν = diag(+,−,−) and,
throughout the paper (unless otherwise stated), we adopt natural units h̄ = c = c̃ = 1, where
c̃ denotes the ‘speed of light’ for the two-dimensional system. Note that, for graphene, c̃ is
approximately two orders of magnitude smaller than the speed of light in vacuum [8, 17]. We
choose the following representation for the Dirac matrices:

γ 0 = σ3, γ 1 = iσ1 and γ 2 = iσ2. (1)

They satisfy the required properties

γ μ† = γ 0γ μγ 0, γ 0 = γ 0†, γ k = −γ k†, k = 1, 2; (2)

{γ μ, γ ν} = γ μγ ν + γ νγ μ = 2gμν
I. (3)

As is well known [18], a second, nonequivalent representation of the Clifford algebra can
be chosen, for instance, by reversing the sign of one of the spatial Dirac matrices. We will
always consider massless fields, two fermion species or flavors, and the direct sum of both
nonequivalent representations, i.e. the effective model for graphene [4, 5].

For the representation in equation (1), the one-particle Dirac Hamiltonian operator HD is
determined by the stationary solutions of the Dirac equation

(i∂/ + eA/)�(x) = D/�(x) = 0, (4)

where −e is the negative electron charge. From the previous equation, it is easily seen that

HD = −eA0 − αkDk, (5)

where γ 0γ k = αk = (−σ2, σ1) and Dk = i∂k + eAk, k = 1, 2.
If a uniform magnetic field is present along the positive Oz-axis perpendicular to the

Oxy-plane, after setting

�E(x
0, x) = e−iEx0

ψE(x
1, x2) = e−iEtψE(x, y), (6)

and choosing the Landau gauge Aμ = (0, 0,−xB), with B > 0, we get the one-particle Dirac
Hamiltonian

HD = i∂xσ2 − (i∂y + eBx)σ1

=
(

0 ∂x − i∂y − eBx

−∂x − i∂y − eBx 0

)
. (7)

We make the ansatz

ψE(x, y) = 1√
2π

∫ ∞

−∞
dpψE,p(x) eipy,

which allows us to determine the eigenvalues of the Hamiltonian from the set of equations(
E −dx − p + eBx

dx − p + eBx E

)
ψE,p(x) = 0. (8)

In order to find the energy eigenstates, it is convenient to introduce the dimensionless coordinate

ξ =
√

2eB
(
x − p

eB

)
, dx =

√
2eBdξ . (9)
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In terms of this variable, the one-particle Dirac Hamiltonian can be written as

HD =
√

2eB

(
0 δ+

−δ− 0

)
,

with

δ± = dξ ∓ ξ

2
,

where the raising and lowering operators satisfy

[δ±, δ∓] = ±1, [δ∓, δ∓] = 0, (10)

δ+|n〉 = −|n + 1〉, δ−|n〉 = n|n − 1〉, (11)

〈z|n〉 = φn(z), 〈n′|n〉 = δnn′ . (12)

Now, if we require the Dirac Hamiltonian to be self-adjoint on the domain L2(R2), we
are driven to the orthonormal set of functions

(n!
√

2π)−1/2Dn(ξ) ≡ φn(ξ), n = 0, 1, 2, . . . , (13)

where

Dn(ξ) = 2−n/2 e−ξ 2/4Hn(ξ/
√

2) (14)

are parabolic cylinder functions of integer order. Note that the normalization constants have
been chosen to satisfy∫ ∞

−∞
dξ φm(ξ)φn(ξ) = δmn, n,m = 0, 1, 2, . . . . (15)

Hence, we obtain the following complete and orthonormal set of stationary improper
eigenfunctions of the first-order Dirac Hamiltonian. These comprise an infinite number of
modes with zero energy:

�0,p(t, x, y) = ψ0,p(x) (Zero modes)

=
(
eB

π

)1/4 1√
2π

(
1
0

)
exp

{
ipy − 1

4
ξ 2

}
, (16)

and an infinite number of modes with nonvanishing energies,

�(±)
n,p (t, x, y) = ψ(±)

n,p (x) exp{±iEnt}

=
(
eB

2

)1/4 1√
2π

exp{±iEnt + ipy}
(

φn(ξ) cos θ±
n

φn−1(ξ) sin θ±
n

)
, (17)

corresponding to eigenenergies ∓En = ∓√
2neB, where tan θ±

n = ∓En.
The spectrum is purely discrete and each eigenvalue exhibits the well-known continuous

Landau degeneracy per unit area,

� = eB

2π
. (18)

In fact, the improper Dirac eigenspinors are normalized according to∫
dxψ†

0,l(x)ψ0,k(x) = δ(k − l), (19)∫
dxψ

(±)

m,l (x)γ
0ψ

(±)
n,k (x) = δmnδ(l − k), (20)
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and, as a consequence, we have∫ ∞

−∞
dk ψ

†
0,k(x)ψ0,k(x) = �,∫ ∞

−∞
dk ψ

(±)

n,k (x)γ
0ψ

(±)
n,k (x) = �, ∀ n ∈ N.

(21)

The corresponding eigenfunctions in the other nonequivalent representation, where
γ 1 → −γ 1, are obtained through ψ0,k → σ1ψ0,k, ψn,k → σ1ψn,k , and the corresponding
energies are the same as those found in the present representation. Finally, to describe
graphene, an overall degeneracy of 2 (two species or ‘flavors’) must be considered to take the
spin of the electrons in the original tight binding model into account.

3. Dirac field interacting with a constant magnetic background, at finite temperature
and density

In order to consider the effect of temperature, we study the same problem as in the previous
section, this time in the Euclidean three-dimensional space, by considering the effective one-
loop action in the path integral approach. This requires the evaluation of the determinant of the
corresponding Euclidean Dirac operator, through some regularization method, which we will
choose to be the zeta function one [10]. To this end, we take the Euclidean gamma matrices
in one of the two nonequivalent representations as

−
γ j= −iγ j , j = 1, 2,

−
γ 3= γ 0,

so that
−
γ μ= σμ, μ = 1, 2, 3, {−

γ μ,
−
γ ν} = 2δμνI,

and set

ix0 = x3, xμ = (x1, x2, x3) = (x, τ ) = (x, y, τ ),

together with

A0 = iA3, Āμ = (A, A3) = (0, Bx,−iυ/e),

where a generalized complex chemical potential υ = μ + iγ has been introduced. Note that
the presence of a real chemical potential in the Minkowski spacetime just amounts to a trivial
overall shift of the energy scale. At finite temperature, instead, the derivative of the effective
action with respect to the real chemical potential will give us the mean value of the net charge
of the theory. The imaginary part of the chemical potential will, later on, allow us to interpret
our results in terms of topological phases.

To describe graphene, we treat the massless Euclidean Dirac operator

(D/ )Eucl = σ1(−i∂x) + σ2(−i∂y − eBx) + σ3(−i∂τ + iυ)

= σλ(pλ − eBxδ2λ − γ δ3λ) + iμσ3. (22)

In order to evaluate the functional determinant, we look for the spectral resolution of
(22), which is not a self-adjoint operator for μ = Re υ �= 0. We restrict its domain to regular
square summable functions in x. Moreover, we shall adopt antiperiodic boundary conditions
on the strip 0 � τ � β, where β = 1/T (note that kB has been put to 1 in natural units). As
a consequence of this antiperiodicity, the three-dimensional Euclidean space manifold is the
direct product M3 = R

2 × C1
(

β

2π

)
, where Cn(r) is the circumference of radius r and integer

winding number equal to n ∈ Z. Hence, the symmetry group of M3 becomes the direct
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product U(1)×O(2) =̇U(1)×U(1), that is, the square of the unitary, non-simply connected,
Abelian group U(1).

To satisfy the antiperiodicity, we introduce the Matsubara angular frequencies

ω� = (2� + 1)
π

β
, � ∈ Z

and propose, for the eigenfunctions of (22),

ψ(x, y, τ ) = 1√
2πβ

∑∫
�,p

exp{i (τω� + py)}ψ�,p(x), (23)

where ∑∫
�,p

≡
∞∑

�=−∞

∫ ∞

−∞
dp.

Thus, the problem to be solved becomes(
ω� + iυ − λ −idx + i(eBx − p)

−idx − i(eBx − p) −ω� − iυ − λ

) (
ϕ�,p

χ�,p

)
= 0.

The resulting spectrum is complex and consists of two parts. We will call the first part
asymmetric, since, given one eigenvalue λ in this part of the spectrum, −λ does not belong to
the spectrum. The second part, which we will call the symmetric part of the spectrum, instead,
is such that, for each eigenvalue λ belonging to this part of the spectrum, −λ also belongs to
the spectrum. (Note that this last part behaves as expected from the eigenvalues of a square
root operator.)

(i) The asymmetric piece of the spectrum, which is an infinite ‘tower’ of states associated
with the lowest Landau level in the Hamiltonian, is given by

λ� = ω� + iυ = ω� − γ + iμ (� ∈ Z) (24)

and has a corresponding set of eigenfunctions

��,p(x, y, τ ) =
(
eB

π

) 1
4
(

e− 1
2 eB(x−p/eB)2

0

)
exp{iτω� + ipy}(2πβ)− 1

2 . (25)

Their normalization is given by∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy ��,p(x, y, τ )�

∗
j,q (x, y, τ ) = δ�j δ (p − q)

and the degeneracy per unit area is, as in the zero temperature case,∫ β

0
dτ

∫ ∞

−∞
dp|��,p(x, y, τ )|2 = eB

2π
= �.

(ii) The symmetric part of the spectrum is related to the excited Landau levels. It is given by

λ = ±λ�,n, λ�,n =
√
λ2
� + 2eBn, (26)

with n ∈ N and � ∈ Z. To obtain the corresponding eigenstates, it is convenient to set

z = x
√

2eB − p

√
2

eB
, dx =

√
2eBdz, (27)

so that

dx ± (p − eBx) =
√

2eB
(
dz ∓ z

2

)
≡

√
2eBδ±, (28)
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where the raising–lowering operators satisfy

[δ±, δ∓] = ±1, [δ∓, δ∓] = 0, (29)

δ+|n〉 = −|n + 1〉, δ−|n〉 = n|n − 1〉, (30)

〈z|n〉 = φn(z), 〈m|n〉 = δmn, (31)

φn(z) ≡ (n!
√

2π)−
1
2 Dn(z), n = 1, 2, . . . .

Hence, if we rewrite the Euclidean Dirac operator in the form

(D/ )Eucl =
√

2eB

( −λ� −iδ+

−iδ− −−λ�

)
, (32)

where −λ� = λ�/
√

2eB, it turns out that the normalized eigenstates are given by

��,p,n,± = (2eB)
1
4 exp{iτω� + ipy}(4πβ)− 1

2 (1 + |��,n,±|2)− 1
2

( ±iφn(z)

��,n,±φn−1(z)

)
, (33)

with

��,n,± = 1√
2eB

(λ�,n ∓ λ�) = n
√

2eB

λ�,n ± λ�

.

Moreover, by setting

λ�,n ≡ ρ�,n(cosα�,n + i sinα�,n),

one finds

ρ�,n = 1√
2eB

{[(ω� − γ )2 − μ2 + 2eBn]2 + 4μ2(ω� − γ )2} 1
4 ,

tan 2α�,n = 2μ(ω� − γ )

(ω� − γ )2 − μ2 + 2eBn

and thereby

Re ��,n,± = ρ�,n cosα�,n ∓ (ω� − γ ),

Im ��,n,± = ρ�,n sinα�,n ∓ μ.

It might be convenient to introduce another different parametrization for the eigenspinors,
which makes use of a pair of sequences of angles, namely

0 < θ±
�,n <

π

2
, 0 < �±

�,n < 2π (� ∈ Z, n ∈ N).

Thus, after calling

��,n,± ≡ tan θ±
�,n exp

{
i�±

�,n

}
,

we can also write

�±
�,p,n = (2eB)

1
4√

4πβ
exp{iτω� + ipy}

( ±iφn(z) cos θ±
�,n

exp
{
i�±

�,n

}
φn−1(z) sin θ±

�,n

)
. (34)

Also in this case, the degeneracy per unit area is given by the Landau factor � in (18).
We remark that, when going to the other nonequivalent representation, the symmetric part of
the spectrum remains the same, but the asymmetric part transforms according to λ� → −λ�

or, equivalently, v → −v.
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4. The effective action. Invariance under large gauge transformations
in the case of a complex chemical potential

It is important to note that, as can be seen from (24) and (26), the whole spectrum is, in any
of the two representations of the Clifford algebra, invariant under the so-called large gauge
transformations [1, 19]:

υ → υ ′ = υ +
2π ij

β
, ψ(x) → ψ ′(x) = ψ(x) eiτ 2πj

β (j ∈ Z),

where x = (x, y, τ ), which are precisely those Euclidean gauge transformations
leaving untouched the antiperiodic boundary conditions satisfied by the spinor Euclidean
wavefunctions and, in consequence, the Fermi–Dirac statistics. In other words, the discrete
imaginary shift of the chemical potential βv → βv + 2π ij (j ∈ Z) is a symmetry
transformation of the theory. In contrast, any other imaginary shift of the chemical potential
cannot be compensated by a phase transformation of the Euclidean spinor wavefunction, for
the latter one would spoil the antiperiodic boundary conditions that the Euclidean spinor field
must satisfy in order to have the right statistics.

The Euclidean effective action for a sample of area �, as defined in terms of the zeta
function regularization technique [10], is given by

�eff = lnZ ≡ ln det(�0(D/ )Eucl)

≡
[
− d

ds
ζ(s,D/ �0)

]
s=0

= −ζ ′(0,D/ �0)

= ��[A(a) + S(a, b)]. (35)

In the last equation, we used the dimensionless reduced variables

a ≡ βυ

2π
, b ≡ 1

2
β
√

2eB,

the arbitrary length scale �0 being introduced to render the argument of the zeta function
dimensionless. It is important to stress that physically meaningful results must be independent
of �0. Here, A and S denote the dimensionless reduced contributions to the full effective action
that originate respectively from the asymmetric and from the symmetric parts of the spectrum
of the Euclidean Dirac operator respectively.

In [9], we presented a detailed calculation of the effective action in the case of a purely
real chemical potential (v = μ), and showed that different selections of the cut in the complex
plane of the eigenvalues of (22) during the evaluation of the determinant lead to predictions for
the Hall conductivity which reproduce the behavior measured for mono- and bilayer samples.
In this section, we will concentrate on the contribution to the effective action due to the
asymmetric portion of the spectrum in the case of a complex chemical potential—a survey of
this calculation appears in [14].

The contribution to the effective action coming from the symmetric part of the spectrum
does not suffer from regularization ambiguities. It is given by

S(a, b) = 2bζR

(
−1

2

)
+

∞∑
n=1

ln{(1 + z e−βεn)(1 + z−1 e−βεn)},

where z = e2πa, εn ≡ √
2eBn and ζR is Riemann’s zeta function. Note that this expression

is invariant under the discrete symmetry v → −v, which is a symmetry of this portion of the
spectrum.

8
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On the other hand, the contribution to the effective action arising from the asymmetric
part of the spectrum is given by

A(a) = −ζ ′
A(0, a),

with

ζA(s, a) =
(

2π�0

β

)−s ∞∑
�=0

[(
� +

1

2
+ i

βυ

2π

)−s

+

(
−� − 1

2
+ i

βυ

2π

)−s
]

=
(

2π�0

β

)−s ∞∑
�=0

[(� + q+)
−s + e∓iπs(� + q−)−s]. (36)

The right-hand side involves the sum of two series representations of Hurwitz zeta functions,
ζ(s, q), which are well defined iff

Re s > 1, βγ �= ±π(2n − 1) (n ∈ N).

In (36), we have introduced the complex quantities

q± ≡ 1

2
± iβ

2π
(μ + iγ ), −π < βγ < π.

The regularization ambiguity, which gives rise to a phase of the determinant [11], has its
roots in the factor e∓iπs or, equivalently, in the selection of the cut of the complex power in
the plane of the eigenvalues of (22). Selecting one or the other sign (cut in the lower (upper)
complex plane), irrespective of the sign of μ, we get

ζA(s, a) =
(

2π�0

β

)−s

{ζ(s, q+) + e∓iπsζ(s, q−)}.
For the contribution to the effective action we obtain, after evaluating the derivative,

A(a) = ln 2π − ln�(q+)�(q−) ± iπ
(

1
2 − q−

)
= ln 2π − ln�

(
1
2 + ia

)
�

(
1
2 − ia

) ∓ πa, for − π < βγ < π, μ ∈ R. (37)

The previous result can also be cast in the form

A(a) = ln 2 coshπa ∓ πa

= ln(eπa + e−πa) ∓ πa

= ln
[
e

1
2 β(μ+iγ ) + e− 1

2 β(μ+iγ )
] ∓ 1

2β(μ + iγ ). (38)

So, in our case, a well-known sign ambiguity [11, 19] appears when evaluating the
determinant of the Dirac operator, as it happens whenever this last operator is not the square
root of a second-order operator of the Laplace type. Note that if the so-called phase of the
determinant were chosen with the same sign for all values of μ, then the contribution of each
representation to the effective action would not be an even function of μ for γ = 0. As a
consequence, the contribution to the charge due to each Dirac point would not change sign as
μ → −μ.

Now, it is always possible and convenient (although not mandatory) to relate the two
opposite phase prescriptions to the sign of the (real part of) the chemical potential.

Turning back to equation (36), if we cut the complex plane of the eigenvalues
λ±
� = (� + q±) (� = 0, 1, 2, . . .) along the upper half-plane for positive values of μ and

along the lower half-plane for negative values of μ, for example, we obtain what we will call
the standard prescription, and will identify through the index κ = −1. In this case, we have

A(a) − ln 2 coshπa =
{−πa, for μ > 0

+πa, for μ < 0
(κ = −1). (39)

9
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We shall call the non-standard prescription, κ = +1, the opposite one:

A(a) − ln 2 coshπa =
{

+πa, for μ > 0
−πa, for μ < 0

(κ = +1). (40)

In so doing, for γ = 0, we recover our previous result [9], namely

1

�
�eff = �

{
1

2
κβ|μ| + ln 2 cosh

βμ

2
+ 2bζ

(
−1

2

)}
+ �

∞∑
n=1

ln{(1 + z e−βεn)(1 + z−1 e−βεn)}.

(41)

These two criteria lead, for a complex chemical potential such that −π < βγ < π, to a
contribution of the asymmetric part of the spectrum to the effective action, which is given by

A(a) = ln(eπa + e−πa) + πaκ sgn(μ)

= ln
[
e

1
2 β(μ+iγ ) + e− 1

2 β(μ+iγ )
]

+ 1
2κβ(μ + iγ ) sgn(μ). (42)

This contribution turns out to be invariant under the generalized conjugation symmetry
a → −a.

One can take the limits βγ → ±π in the last expression and write

lim
βγ→π−

A(a) = ln 2 sinh
β|μ|

2
+

1

2
κβ|μ| +

π i

2
(1 + κ) sgn(μ),

lim
βγ→−π+

A(a) = ln 2 sinh
β|μ|

2
+

1

2
κβ|μ| − π i

2
(1 + κ) sgn(μ),

and therefore [
lim

βγ→π−
− lim

βγ→−π+

]
A(a) =

{
0 for κ = −1

2π i sgn(μ) for κ = +1.

However, the exact calculation can be performed at both extreme points of the interval,
and both results coincide, as dictated by the invariance of the spectrum under large gauge
transformations, which amounts to βγ → βγ + 2π . The zeta function regularization, which
is based solely on the properties of the spectrum, respects this invariance for all values of
βγ . In a zeta function regularization approach, it is not only the partition function that is
invariant under these transformations but it is the effective action itself that remains invariant.
So, we can limit ourselves to give the result for the contribution to the effective action of the
asymmetric part of the spectrum, for −π < βγ � π,

�−1�eff = �[A(a) + S(a, b)]

= eB

2π

{
ln(eπa + e−πa) + πaκsgn(μ) + 2bζ

(
−1

2

)
+

∞∑
n=1

ln[(1 + z e−βεn)(1 + z−1 e−βεn)]

}
. (43)

The result for any other value can be obtained by using

�eff(βμ + iβγ ) = �eff(βμ + 2π ij + iβγ ) (j ∈ Z).

In fact, for any of the two selections of κ , the whole effective action, per unit degree of
freedom, is invariant under large gauge transformations. As explained in [14], this amounts
to an invariance under rotations of angle 4π around an axis perpendicular to the plane of the
sample in the Euclidean space. We discuss this point in the following section.

10
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5. Zero temperature limit

Owing to the fact that the eigenfunctions corresponding to the asymmetric part of the spectrum
are eigenstates of σ3 with eigenvalue +1, one can equivalently write gauge transformations in
the form

��,p(x, y, τ ) → exp
{

1
2 iσ3(2γ )τ

}
��,p(x, y, τ ).

This last expression shows that, as the Euclidean time τ grows from 0 to β, spinors are rotated
by 2βγ , since 1

2σ3 is the generator of rotations in the Oxy-plane. In particular, βγ = 2π
corresponds to a rotation of angle 4π around the magnetic field. Such a rotation must be an
invariance for spinors, which provides one interpretation of the invariance under large gauge
transformations.

On the other hand, βγ = π corresponds to a rotation of angle 2π. As can be seen from
(43), at finite temperature, such a transformation turns the statistics from Fermi–Dirac to Bose–
Einstein, for any of the two selections of phases in one of the two inequivalent representations
(for a discussion about Bose–Fermi transmutation and relativistic ‘anyons’ see, for instance,
[20]). For κ = +1, it also gives rise to an overall phase of π per unit degeneracy in the partition
function, which can be recognized as Berry’s phase. Such a phase is the contribution which
survives in the low temperature limit. In fact, in this limit one has from equation (42)

��A(a) = 1
2 (κ + 1)��β(μ + iγ ) sgn(μ) (β → ∞). (44)

Thus, in the zero temperature limit, the effective action vanishes for the standard phase
prescription (κ = −1), so that the partition function is rotationally invariant. For κ = +1,
the imaginary term in ��A(a) (i.e. the one proportional to γ ) is the Abelian Chern–Simons
term:

iβγ�
eB

2π
sgn(μ) = ACS = β�

2
κCS

ie2

2π
εμνρFμνAρ,

where κCS denotes the Chern–Simons coefficient, a pure number of a topological origin
(remember that ieA3 = μ + iγ ). Our calculation clearly shows that the latter one is invariant,
as expected, under large gauge transformations, which represent rotations by integer multiples
of 4π. In contrast, under rotations of angle 2π (βγ = π) the partition function is multiplied
by (when taking into account the two flavors)

Z(βγ = π) → Z e±2π i��.

Hence, the requirement of the partition function, in each representation, being invariant
under rotations of angle 2π , for an area �, entails a quantization condition on the coefficient
of the Chern–Simons term or, equivalently, on the reduced flux of the magnetic field, i.e.
�� = N ∈ N. Interestingly enough, this is precisely the condition for physical states to
transform according to the one-dimensional ray representations of the magnetic translation
group [21].

Also note that the geometric phase appearing for κ = +1 leads, in the zero temperature
limit, to Berry’s phase which equals π for each degree of freedom. A similar calculation in the
other irreducible representation of the Clifford algebra would give exactly the same results, if
the same criterion were used to fix the phase of the determinant. As stressed in [9], the right
behavior for the Hall conductivity in monolayer graphene appears when choosing opposite
criteria in the two nonequivalent representations, which corresponds to total Berry’s phase
of π per unit degree of freedom. On the other hand, using the same criterion (κ = +1) in
both representations, which corresponds to Berry’s phase of 2π per unit degree of freedom,
correctly reproduces the Hall conductivity of bilayer graphene [9]. For other discussions of
Berry’a phases in mono- and bilayer graphene see, for instance, [22–24].
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6. Spinors in a constant electric field: pair production at T = 0

Now consider a graphene sample in the presence of a constant electrostatic field pointing
toward the positive Ox-axis, i.e. F 10 = F01 = Ex = E > 0. In this section, we will choose a
gauge which leads to non-stationary sets of solutions. Throughout this section we will present
a calculation, for the (2+1)-dimensional case, which is quite similar to that performed in [25]
for the (3+1)-dimensional Minkowski spacetime. In particular, to solve the Dirac equation
in the present (2+1)-dimensional massless case it is convenient to employ the following
representation for the gamma matrices:

γ 0 = σ1, γ 1 = iσ2, γ 2 = iσ3. (45)

After setting (x0, x1, x2) = (t, x, y), we get the massless Dirac operator in the gauge [25]
Aμ = (0,−Et, 0), i.e.

D/ = i∂tσ1 + (i∂x + eEt)iσ2 − ∂yσ3, (46)

which is explicitly time dependent. In order to obtain the solutions in this gauge, it is convenient
to introduce the partial Fourier transforms

�(t, x, y) = 1

2π

∫ ∞

−∞
dp

∫ ∞

−∞
dk eipx+iky�̃(t, p, k), (47)

with p = (p, k) as well as the dimensionless quantities

ξ ≡ (p − eEt)/
√
eE, λ ≡ k2/eE. (48)

If we write

�(t, x, y) =
(
ϕ(t, x, y)

χ(t, x, y)

)
, �̃(t, p, k) =

(
ϕ̃(t, p, k)

χ̃(t, p, k)

)
, (49)

we obtain the coupled differential equations{
ikϕ̃ +

√
eE(idξ + ξ)χ̃ = 0,√

eE(−idξ + ξ )̃ϕ + ikχ̃ = 0.
(50)

Then, we can write

χ̃ = (i/
√
λ)(−idξ + ξ )̃ϕ, (λ �= 0) (51)(

d2
ξ + ξ 2 + λ + i

)̃
ϕ = 0. (52)

(idξ + ξ)χ̃ = 0, (−idξ + ξ )̃ϕ = 0 (λ = 0). (53)

The general solutions of equation (53) can be expressed in terms of two different sets of
linearly independent solutions, involving parabolic cylinder functions [26]:

ϕ̃(ξ, λ) = AinD−iλ/2[+(1 + i)ξ ] + B∗
inDiλ/2−1[+(1 − i)ξ ], (54)

where Ain and Bin are complex constants. From the recursive relations

(−idξ + ξ)D−iλ/2[±(1 + i)ξ ] = ∓λ

2
(1 + i)D−iλ/2−1[±(1 + i)ξ ],

(−idξ + ξ)Diλ/2−1[±(1 − i)ξ ] = ±(1 + i)Diλ/2[±(1 − i)ξ ],
(55)

we get the normalized spinors, which are solutions of the original massless Dirac equation
and read as

−�p(t, x) = 1

4π
exp

{
ip · x − πλ

8

} (
2D−iλ/2[(1 + i)ξ ]

+(1 − i)
√
λD−iλ/2−1[(1 + i)ξ ]

)
, (56)
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+�p(t, x) = 1

4π
exp

{
ip · x − πλ

8

}(
−(1 + i)

√
λDiλ/2−1[(1 − i)ξ ]

2Diλ/2[(1 − i)ξ ]

)
. (57)

An alternative set of linearly independent solutions can be selected, that is,

ϕ̃(ξ, λ) = AoutD−iλ/2[−(1 + i)ξ ] + B∗
outDiλ/2−1[−(1 − i)ξ ]. (58)

Then, the recursive relations in equation (55) give

+�p(t, x) = 1

4π
exp

{
ip · x − πλ

8

}(
2D−iλ/2[−(1 + i)ξ ]

−(1 − i)
√
λD−iλ/2−1[−(1 + i)ξ ]

)
, (59)

−�p(t, x) = 1

4π
exp

{
ip · x − πλ

8

} (
+(1 + i)

√
λDiλ/2−1[−(1 − i)ξ ]

2Diλ/2[−(1 − i)ξ ]

)
. (60)

The above spinor solutions fulfill the orthonormality relations

(±�p, ±�q) =
∫

±�†
p(t, x)±�q(t, x) dx = δ(p − q), (61)

(±�p,
±�q) =

∫
±�†

p(t, x)±�q(t, x) dx = δ(p − q), (62)

(±�p, ∓�q) = 0 = (±�p,
∓�q). (63)

Note that for λ = 0 = k, owing to D0(z) = exp{−z2/4}, both pairs of solutions coincide
and read as

−�p(t, x) = +�p(t, x) = 1

2π
exp

{
ipx − i

2
ξ 2(t)

} (
1
0

)
, (64)

+�p(t, x) = −�p(t, x) = 1

2π
exp

{
ipx +

i

2
ξ 2(t)

}(
0
1

)
. (65)

By looking at the asymptotic behavior of the parabolic cylinder functions, one finds

−�p(t, x) ∼ 1

2π
[2ξ 2(t)]−iλ/4

(
1
0

)
exp

{
ip · x − i

2
ξ 2(t)

}
(t → −∞) (66)

+�p(t, x) ∼ 1

2π
[2ξ 2(t)]iλ/4

(
0
1

)
exp

{
ip · x +

i

2
ξ 2(t)

}
(t → −∞) (67)

+�p(t, x) ∼ 1

2π
[2ξ 2(t)]−iλ/4

(
1
0

)
exp

{
ip · x − i

2
ξ 2(t)

}
(t → +∞) (68)

−�p(t, x) ∼ 1

2π
[2ξ 2(t)]iλ/4

(
0
1

)
exp

{
ip · x +

i

2
ξ 2(t)

}
(t → +∞). (69)

Hence, we understand +�p as the wavefunction of an incoming quasi-particle, while we
associate the wavefunction −�p with an incoming anti-quasi-particle. Conversely, we shall
associate +�p and −�p with the corresponding outgoing wavefunctions [25].

The above sets of incoming and outgoing solutions are related throughout a Bogoliubov-
like unitary transformation, that is,{

+�p(x) = c+
1�p(x) + c−

2 �p(x)

−�p(x) = −c∗
2

+�p(x) + c∗
1
−�p(x),

|c1|2 + |c2|2 = 1. (70)
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We have

(+�p, +�q) = N∗
λ δ(p − q), (71)

(−�p, −�q) = Nλδ(p − q), (72)

(±�p, ∓�q) = exp{−πλ/2}δ(p − q), (73)

where

Nλ =
√

λ

π
�

(
iλ

2

)
sinh

(
πλ

2

)
exp

{
−πλ

4
+

3π i

4

}
. (74)

with

|Nλ|2 = 1 − exp{−πλ}.
Then, using the above-listed orthonormality relations (61)–(63), we immediately find

c1 = N∗
λ , c2 = exp{−πλ/2} = c∗

2 . (75)

As a consequence, in the transition to the quantum field theory, we can write the most general
operator solutions of the Dirac equation as

�in(x) =
∫

dp
[
ain(p)+�p(x) + b†in(p)−�p(x)

]
,

�out(x) =
∫

dp
[
aout(p)+�p(x) + b

†
out(p)

−�p(x)
]
,

where each set of creation and destruction operators fulfills the standard canonical
anticommutation relations. From the condition �in(x) = �out(x), one has

aout(p) = c1ain(p) − c2b
†
in(p), (76)

b
†
out(p) = c2ain(p) + c∗

1b
†
in(p), (77)

so that

〈0 p out| = 〈0 p in|bin(p)b
†
out(p

′)

= 〈0 p in|ain(p)a
†
out(p

′)
= 〈0 p in|(c∗

1δ(p − p′) − c2ain(p′)bin(p)). (78)

Once we have the properly defined asymptotic in and out spinor states, which are explicitly
gauge dependent, we can naturally define and calculate the gauge-invariant probabilities for
the processes of pair creation and annihilation in the presence of the background electrostatic
field. We start by obtaining the vacuum persistence amplitude at a given p. From
equations (75) and (78), we find

〈0 p out|0 q in〉 = c∗
1δ(p − q)

=
∫

dx−�†
p(x)−�q(x) = Nλδ(p − q), (79)

with Nλ given by equation (74).
In turn, the probability of vacuum decay at a given p is

wλ = 1 − |Nλ|2,
or, more explicitly,

wλ = exp{−πλ}, λ = k2

eE
. (80)
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It is clear that the latter one is also the probability of the inverse process, i.e. the annihilation
in the state p with transfer of energy to the external field. As a matter of fact, we also have∫

dx+�†
p(t, x)−�q(t, x) = δ(p − q) exp

{
−1

2
πλ

}
. (81)

The total vacuum persistence amplitude can be written, after recovering physical units, in
the form (see the recent up-to-date review [27])

〈out 0|0 in〉 = exp
{ i

h̄
[Re�eff(E) + i Im�eff(E)]

}
, (82)

and the corresponding probability is

|〈out 0|0 in〉|2 = exp

{
−2�T

h̄
ImLeff(E)

}
, (83)

where Leff(E) is the effective Lagrange density in the presence of a background electrostatic
field E, T is the total time and � denotes the area of the sample. It turns out that �eff(E)

contains a real part that describes dispersive effects, such as the vacuum birefringence, as well
as an imaginary part that concerns absorptive effects, such as vacuum decay. Now, according
to the above derivation, the vacuum persistence probability can be obtained from

(�T )−1 ln |〈out 0|0 in〉|2 = eE

4π2h̄2

∫ ∞

−∞
dk ln

(
1 − exp

{
−πk2c̃

eEh̄

})
, (84)

where we have introduced the number of states between p and p + dp, which is �

4π2h̄2 , and we
have used that dp = eEdt .

So, for the imaginary part of the effective action, we have, after taking the degeneracy f

into account,

2

h̄
ImLeff(E) = −f

eE

4π2h̄2 P.V .

∫ ∞

−∞
dk ln

(
1 − exp

{
−πk2c̃

eEh̄

})
= f

(eE)
3
2

4π2h̄
3
2 c̃

1
2

∞∑
n=1

1

n3/2
= f

[
ζ
(

3
2

)
2π

]
eE

2πh̄

√
eE

h̄c̃
, (85)

where c̃ is the speed of light for the two-dimensional graphene sample and f is the number
of fermion species or flavors, which is four for graphene, since the result is the same in both
nonequivalent representations of the Clifford algebra. Moreover, the symbol P.V . stands for
the Cauchy principal value prescription, i.e. P.V .

∫ ∞
−∞ dk = 2 limε→0

∫ ∞
ε

dk, which is the
natural even prescription for the integrand around k = 0. For previous, related results, see
[28, 29].

Note that the vacuum persistence probability exp{(−2/h̄)�T ImLeff(E)} is quite small,
even at finite time and for a finite area, due to the massless character of the quasi-particles in
graphene. So, the probability of the complementary event

P = 1 − exp

(
−2

h̄
�T ImLeff(E)

)
is high and by no means approximatively given by the effective action as in the case of massive
particles/antiparticles pairs. The vacuum persistence probability obtained by replacing (85)
into this last equation coincides with the zero-mass limit of that reported in [30].

Some authors [31], starting with Schwinger [32], call this quantity the probability of pair
creation. Others (see [30, 33] and references therein), following Nikishov [34], prefer to
characterize the creation of pairs through the rate of pair production. Note that the rate of pair
production was evaluated in the same number of dimensions, for the massive case, in [30]. In
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the zero mass limit, the result found in this last reference is given by the first term of the series
in (85). This is exactly the result one would get after integrating (80) over all impulses, when
counting the number of states between p and p + dp as before.

Apart from the way one characterizes vacuum decay, the important point is, indeed, that
the probability of actually detecting vacuum decay effects is another appealing characteristic
of graphene, at variance with the case of massive particles, in which vacuum decay is very
hard to be unraveled (see [27]).

7. Dirac field interacting with a constant electric background at finite temperature and
density

Now consider the problem of a graphene sample in the presence of a constant electric field
pointing toward the positive Ox-axis, i.e. F 10 = F01 = Ex = E > 0, at finite temperature
and density.

As done in section 3, here we will employ path integral methods and zeta function
regularization. In this section, at variance with what has been done in the previous one, we
choose a gauge which leads to a stationary set of solutions.

To solve for the eigenvalues of the Dirac equation in the three-dimensional Euclidean
space, with metric (+,+,+), it is convenient to employ the following representation for the
Euclidean gamma matrices:

−
γ 1= σ1,

−
γ 2= σ3,

−
γ 3= σ2. (86)

After setting ix0 = τ, xμ = (x1, x2, x3) = (x, y, τ ) and taking into account that
Āμ = (0, 0, Ex + iυ/e)(e > 0) with A0 = iĀ3, E = iE, we get the Euclidean Dirac operator

D/ Eucl = (i∂τ − eEx − iυ)σ2 + i∂xσ1 + i∂yσ3. (87)

In order to evaluate the effective action at finite temperature, one must impose antiperiodic
boundary conditions on the eigenfunctions, as in section 3. In this gauge, it is convenient to
write the partial Fourier transform

�(x, y, τ ) = 1√
(2πβ)

∞∑
�=−∞

exp{iτω�}
∫ ∞

−∞
dk eiky�̃�(x, k), (88)

where, as before,

ω� = 2π

β

(
� +

1

2

)
denote the Matsubara angular frequencies.

Moreover, it turns out to be very convenient to introduce the dimensionless quantities

ξ� ≡ (λ� + eEx)/
√
eE, d� ≡ d

dξ�
(� ∈ Z), (89)

with λ� = ω� + iv, so that the eigenvalue equation reads as (note that, here, λ represents the
eigenvalues of the Euclidean Dirac operator and is different from λ in the previous section)

√
eE

(
−k/

√
eE id� + iξ�

id� − iξ� k/
√
eE

)
�̃�(x, k) = λ�̃�(x, k). (90)

If we write once again

�̃�(x, k) ≡
(
ϕ̃�(x, k)

χ̃�(x, k)

)
, (91)
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we are lead to the coupled differential equations{ √
eE(d� + ξ�)χ̃� + i(λ + k)̃ϕ� = 0,√
eE(d� − ξ�)̃ϕ� + i(λ − k)χ̃� = 0.

(92)

After solving these equations,

(i) When λ = k, we obtain the following infinite set of degenerate normalized improper
eigenspinors, namely

�0,k,�(x, y, τ ) =
(
eE
π

) 1
4

exp{iτω� + iky}(2πβ)− 1
2

(
0

exp
{− 1

2eE (x + λ�/eE)2
})

,

� ∈ Z, k ∈ R, (93)

which fulfill∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy�†

0,p,m(x, y, τ )�0,k,�(x, y, τ ) = δ�mδ(k − p). (94)

Their degeneracy is
∞∑

�=−∞
�

†
0,k,�(x, y, τ )�0,k,�(x, y, τ )

= 1

2πβ

√
eE
π

∞∑
�=−∞

exp

{
− 4π2

eEβ2

(
� +

1

2
+ z

)2
}

= eE
4π2

, (95)

where we have suitably introduced the rescaled and dimensionless complex coordinate
z = (eEx+iυ) β

2π , while use has been made of the Euler–McLaurin summation formula—
see for example equation (3.6.28) in [35]. Note that the �th term of the series is an even
function of �. Thus, all the odd derivatives vanish at � = 0. Moreover, the �th term and all
its derivatives vanish at infinity. As a consequence we come to the result that the number
of degenerate eigenspinors per unit Euclidean ‘time’ and unit x-length is provided by
�E = eE/4π2, the degeneracy factor being the same for all the remaining modes.

(ii) For λ �= k, we can write

χ̃ = i
√
eE

λ − k
(d� − ξ�)̃ϕ, (96)

(
d2
� − ξ 2

� + ! − 1
)̃
ϕ = 0, ! ≡ λ2 − k2

eE
. (97)

As in section 3, the eigenvalue problem for each � ∈ Z is that of a linear harmonic
oscillator, so that the spectrum takes the symmetric form

λk,n = ±
√
k2 + 2eEn, n = 1, . . . ,∞, k ∈ R (∀ � ∈ Z).

The somewhat surprising conclusion we can draw from the above analysis is that neither
the eigenvalues nor the degeneracy depend at all upon the temperature and/or the chemical
potential. Hence, once we have at hand the spectrum of the Euclidean Dirac operator and its
overall degeneracy, which is the same for all eigenvalues, we can turn to the evaluation of the
Euclidean effective action, within the zeta function approach. In this case, we have

ζ(s,D/ �y) = �Eβ�x�y

∫ ∞

−∞
dk

[
(�yk)

−s +
1 + e∓π is(
2eE�y2

)s/2

∞∑
n=1

(
n +

k2

2eE

)−s/2
]
. (98)
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Here, the length scale �y has been introduced to render the second argument in the zeta
function dimensionless.

Now, equation (98) can be rewritten as

ζ(s,D/ �y) = �E�β

{ ∫ ∞

−∞
dk(�yk)

−s

+
1 + e∓π is

�(s/2)
(
2eE�y2

)s/2

∫ ∞

−∞
dk

∫ ∞

0
dt t s/2−1

∞∑
n=1

e−tn−tk2/2eE

}
. (99)

For Re s > 1 the two integrals in the second line can be interchanged and, if the integral in the
first line is understood in terms of the Cauchy principal value prescription, according to our
comment in section 4, we get

ζ(s,D/ �y) = �E�β(1 + e∓π is)�y
−s

×
[

lim
ε→0

(ε)1−s

1 − s
+

(s/2)
√
π

� (1 + s/2)
(2eE)

1−s
2 ζ

(
s − 1

2

)
�

(
s − 1

2

)]
. (100)

We finally obtain the Euclidean effective action per unit volume in the form
(note, however, that the contribution coming from the first term was defined here as
− limε→0

∫ ∞
ε

dk d
ds

⌋
s=0(�yk)

−s , the integrand being evaluated at Re s > 1 and then extended
to s = 0 before taking the principal value limit)

1

�β

[
− d

ds
ζ(s,D/ β)

]
s=0

= −�E�

(
−1

2

)
ζ

(
−1

2

) √
2πeE

= −2
√

2π�Eζ
(− 1

2

)√
eE .

where (see [26])

2
√

2ζ

(
−1

2

)
= 1

π

∞∑
n=1

n−3/2 sin
(
−π

4

)
= −ζ

(
3
2

)
π

√
2
.

As a consequence, we can recast the Euclidean effective Lagrangian as

LE
eff = ζ

(
3
2

)
4π2

√
2
(eE)3/2, (101)

so that, after turning back to the (2+1)-dimensional Minkowski spacetime by means of the
replacement E = −iE, we obtain the effective Lagrange density

LM
eff(E) = ζ

(
3
2

)
8π2

(eE)3/2[(1 + i)]. (102)

It follows that, as in equation (83), we end up with the correspondence

〈out 0|0 in〉 = exp
{
i�T LM

eff(E)
} = exp

{
i�T

ζ
(

3
2

)
8π2

(eE)3/2(1 + i)

}
, (103)

which leads, after recovering physical units, to equation (85), i.e. the (2+1)-dimensional
counterpart of the celebrated Schwinger formula [32]

ImLM
eff(E) = f

ζ
(

3
2

)
(eE)

3
2

8π2h̄
√
h̄c̃

, (104)

where c̃ is the speed of light for the two-dimensional graphene sample and f is the number of
fermion species or flavors, which is four for graphene, in perfect agreement with our previous
result (85). Moreover we find that in the (2+1)-dimensional case the following remarkable
equalities hold true, namely

ReLM
eff(E) = ImLM

eff(E) = −LE
eff(E).
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8. Minimal quantum conductivity of graphene from planar QED

Of particular interest in the presence of a constant electric background is the mean current
density or, equivalently, the minimal conductivity of graphene. In order to evaluate the mean
value of such quantum current density, we go back to our calculation in the previous section,
this time introducing a Lagrange multiplier α through the non-trivial replacement k → (k+iα).
The derivative of the effective action with respect to the external parameter α will then give us
the required mean value of the quantum current density. Actually, we can say that the control
parameter α plays a role very similar to that played by the chemical potential in the evaluation
of the particle number or charge density.

If we consider the manifold to be compact in the y direction, all we have to do is to turn
back to equation (100), where we have, after a shift in the transverse momentum integration
variable k,

ζ(s,D/ �y;α) = �E�β�y
−s

{ ∫ ∞

−∞
dk(k + iα)−s

+
1 + e∓πis

�(s/2) (2eE)s/2

∫ ∞

−∞
dk

∫ ∞

0
dt t s/2−1

∞∑
n=1

e−tn−t(k+iα)2/2eE

}
. (105)

Now, the shift in the second term is irrelevant, since the Gaussian function is an entire
function. Then, the α-dependence is solely due to the first term and, consequently, the only
contribution to the minimal quantum current density will arise from the quantity

ZE(s;α) = �E�β�y
−s

∫ ∞

−∞
dk(k + iα)−s

= �E�β�y
−s

∫ ∞

0
dk[(k + iα)−s + (−1)−s(k − iα)−s].

At variance with the case of the previous section (α = 0), the zeta regularization of this
term is now well defined, the only ambiguity being the selection of the phase, much as in the
calculation of the charge when the sample is subjected to a magnetic field. As in that case,
one can make two selections of the phase. Indeed,

ZE(s;α) = �E�β�y
−s

∫ ∞

0
dk[(k + iα)−s + e−π isκsign(α)(k − iα)−s], (106)

where, as before, κ = −1 represents the ‘usual’ selection of phase, whilst κ = 1 the opposite
‘unusual’ one. Thus, for Re s > 1, we get

ZE(s;α) = −�E�
(iαβ)1−s

1 − s
[1 − e−2π isκsign(α)]. (107)

Performing the s-derivative and evaluating at s = 0, we get for the α-dependent part of the
Euclidean effective action

�E
eff(α) = −2π�E�βκ|α| = − eE

2π
β�κ|α|. (108)

To the aim of recovering the minimal quantum current density it is necessary, first, to go back
to the (2+1)-dimensional Minkowski spacetime, i.e.

�M
eff(α) = eE

2π
T �κ|α|. (109)

Now, it turns out that performing the derivative with respect to α, dividing by �T and
multiplying by the elementary charge, −e, we have

〈Jmin〉 = −e2E

2π
κ sign(α). (110)
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Note that, in the other representation, the result is the same if the same criterion is
chosen to define the phase of the determinant. Thus, summing up the contributions from
both representations, in contrast to the case of the Hall conductivity, with the same criterion,
multiplying by the two spins (flavors) and recovering the physical units, we find for graphene

〈Jmin〉 = −4e2

h
Eκ sign(α). (111)

The quantization of the minimal quantum conductivity

σmin = −4e2

h
κ sign(α) (112)

in terms of the quantum unit of conductivity makes this prediction entirely different from the
results obtained, for instance, through the Kubo formula [15, 16], where an extra factor of π
in the denominator appears. Moreover, for κ = −1 and positive α one obtains exactly the
result in [8]. It is interesting to note that a similar experimental value is also found for bilayer
graphene [24].

As already stressed, this result is independent of both the temperature and the chemical
potential.

9. Conclusions

In this paper, we have carefully analyzed the response of a graphene sample under the influence
of homogeneous electric and magnetic fields. Our present investigation has its roots in the
well-established quantum field theoretic model of a free massless Dirac spinor in two space
and one time dimensions, i.e. the massless planar spinor quantum electrodynamics. In spite of
its simplicity, this quantum field theory does exhibit remarkable features. As a matter of fact,
in the presence of a uniform magnetic field at finite temperature and density, a nice connection
has been established, in this paper, among the phase prescription of the effective action, the
large gauge transformation invariance, Berry’s phases and Chern–Simons topological terms,
besides the different forms for the Hall conductivity we had already elucidated in our previous
paper [9].

Moreover, in the presence of a constant electrostatic field, a derivation of the imaginary
part of the effective Lagrangian at zero temperature has been presented. Our result coincides
with the zero mass limit of that obtained, for instance, in [30].

Interestingly enough, at finite temperature, the imaginary part of the effective Lagrangian
turns out to be independent of the temperature and density and coincides with the massless
planar limit of the celebrated Schwinger formula [32]. The corresponding probability of
vacuum decay, for a realistic graphene sample, can be very high for laboratory fields, at
variance with the common case of massive charged electron positron pairs. In the case of
3 + 1 dimensions, such independence was shown to hold, to the order of one loop, in [2]. Our
result in 2 + 1 is stronger: indeed, our calculations show that the whole effective Lagrangian
is independent of the temperature and of the chemical potential, within the zeta function
regularization scheme.

Furthermore, our treatment, based on the zeta function regularization technique, allowed
us to obtain the (finite) average value for the minimal quantum current density and, thus, a
minimal quantum conductivity for graphene, which, at variance with most theoretical results
[15, 16], agrees, for a particular selection of the phase of the determinant in both irreducible
representations, with that exhibited in [8]. The corresponding current is topological in origin,
as is the behavior of the Hall conductivity (for general studies of topological currents in 2+1
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QED see, for example, [29, 36]). We hope the present paper will be helpful in clarifying the
so-called mystery of the missing pi [8] or its absence thereof [37].
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Appendix. Parabolic cylinder functions

The parabolic cylinder functions, of the special form we are interested in the present context,
can be defined, e.g., by the integral representation (9.241) 1. p 1092 of [26]:

D−iλ/2[±(1 + i)ξ ] = 1√
π

2−iλ/2+1/2e−πλ/4 eiξ 2/2
∫ ∞

−∞
x−iλ/2 e−2x2±2ix(1+i)ξ dx, (A.1)

where λ > 0, ξ ∈ R, argx−iλ/2 = λ/2 for x < 0, so that

D∗
−iλ/2[±(1 + i)ξ ] = 1√

π
2iλ/2+1/2 e−πλ/4 e−iξ 2/2

∫ ∞

−∞
x iλ/2 e−2x2∓2ix(1−i)ξ dx. (A.2)

After the change of variable x �−→ −x

D∗
−iλ/2[±(1 + i)ξ ] = 1√

π
2iλ/2+1/2 eπλ/4 e−iξ 2/2

∫ ∞

−∞
x iλ/2 e−2x2±2ix(1−i)ξ dx, (A.3)

we eventually come to the conjugation property

D∗
−iλ/2[±(1 + i)ξ ] = Diλ/2[±(1 − i)ξ ], (A.4)

as naı̈vely expected. The following special values appear in our calculations:

D±iλ/2(0) = π−1/22±iλ/4�

(
1

2
± iλ

4

)
cosh

πλ

4
, (A.5)

D±iλ/2−1(0) = ±iπ−1/22±iλ/4−1/2�

(
± iλ

4

)
sinh

πλ

4
; (A.6)

±λ

2
|D±iλ/2−1(0)|2 = ± sinh

πλ

4
, (A.7)

|D±iλ/2(0)|2 = cosh
πλ

4
. (A.8)

The parabolic cylinder functions fulfill the recursion formulae

d

dz
Dν(z) = −1

2
zDν(z) + νDν−1(z), (A.9)

d

dz
Dν(z) = 1

2
zDν(z) − Dν+1(z). (A.10)

Consider the combination

D+ ≡ D−iλ/2[(1 + i)ξ ]Diλ/2[(1 − i)ξ ] +
λ

2
D−iλ/2−1[(1 + i)ξ ]Diλ/2−1[(1 − i)ξ ]. (A.11)
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From the recursion formulae, we get

2
d

dξ
D−iλ/2[(1 + i)ξ ]Diλ/2[(1 − i)ξ ] = λ(1 + i)D−iλ/2[(1 + i)ξ ]Diλ/2−1[(1 − i)ξ ] + c.c.

λ
d

dξ
D−iλ/2−1[(1+ i)ξ ]Diλ/2−1[(1− i)ξ ] =−λ(1+ i)D−iλ/2[(1 + i)ξ ]Diλ/2−1[(1 − i)ξ ] + c.c.,

so that the above combination D+ does not depend upon ξ and from the conjugation property
(A.4) we can write

D+ = |D−iλ/2(0)|2 +
λ

2
|D−iλ/2−1(0)|2 = exp{πλ/4}. (A.12)

Let us now consider the further combination

D− ≡ D−iλ/2[(1 + i)ξ ]Diλ/2[−(1 − i)ξ ] − λ

2
D−iλ/2−1[(1 + i)ξ ]Diλ/2−1[−(1 − i)ξ ]. (A.13)

From the recursion formulae, we get

2
d

dξ
{Diλ/2[(i − 1)ξ ]D−iλ/2[(i + 1)ξ ]} = λ(1 − i)Diλ/2[(i − 1)ξ ]D−iλ/2−1[(i + 1)ξ ]

− λ(1 + i)D−iλ/2[(i + 1)ξ ]Diλ/2−1[(i − 1)ξ ]

λ
d

dξ
{D−iλ/2−1[(i + 1)ξ ]Diλ/2−1[(i − 1)ξ ]} = λ(1 − i)Diλ/2[(i − 1)ξ ]D−iλ/2−1[(i + 1)ξ ]

− λ(1 + i)D−iλ/2[(i + 1)ξ ]Diλ/2−1[(i − 1)ξ ], (A.14)

which also leads to the conclusion that the quantity D− is independent of ξ , and yields

D− = |D−iλ/2(0)|2 − λ

2
|D−iλ/2−1(0)|2 = exp{−πλ/4}. (A.15)

The above important properties of the parabolic cylinder functions can be summarized in the
remarkable formula

D± = |Diλ/2(0)|2 ± λ

2
|Diλ/2−1(0)|2 = exp{±πλ/4}. (A.16)

Consider the second-order differential equations(
d2

dξ 2
+ ξ 2 + λ ± i

)
f±(ξ, λ) = 0. (A.17)

Two pairs of linearly independent solutions for the upper sign equation are

f (1)
+ (±ξ, λ) = D−iλ/2(±ξ

√
2 eπ i/4) (A.18)

f (2)
+ (±ξ, λ) = Diλ/2−1(±ξ

√
2 e−π i/4) (A.19)

while two couples of linearly independent solutions for the lower sign equation are

f
(1)
− (±ξ, λ) = D−iλ/2−1(±ξ

√
2 eπ i/4) (A.20)

f
(2)
− (±ξ, λ) = Diλ/2(±ξ

√
2 e−π i/4). (A.21)

To the aim of verifying linear independence, we have to compute the Wronskian. Let us first
calculate derivatives by means of the recursion formulae (A.9) and (A.10) that yield

d

dξ
D−iλ/2(±ξ

√
2 eπ i/4) = −iξD−iλ/2(±ξ

√
2 eπ i/4) ∓ λ√

2
e3π i/4D−iλ/2−1(±ξ

√
2 eπ i/4)
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and thereby

W
[
f (1)

+ (ξ, λ), f (1)
+ (−ξ, λ)

] = 1 + i√
π

�

(
− iλ

2

)
sinh

(
πλ

2

)
. (A.22)

On the other hand, we readily find

W
[
f (1)

+ (±ξ, λ), f (2)
+ (±ξ, λ)

] = ∓(1 − i) exp{πλ/4} (A.23)

and analogous relationships for the other solutions.
In order to understand the physical meaning of the solutions of the wave field equations,

we have to analyze the leading asymptotic behavior of the parabolic cylinder functions. Then
from equation (9.246) 1. p 1093 of [26], we have

D−iλ/2(ξ
√

2 eπ i/4) ∼ (2ξ 2)−iλ/4 eπλ/8 exp{−iξ 2/2}
D−iλ/2−1(ξ

√
2 eπ i/4) ∼ O(ξ−1)

}
(ξ � λ > 0).

If instead ξ � −λ, we have either ξ eπ i/4 = |ξ | e5π i/4 or else ξ eπ i/4 = |ξ | e−3π i/4.

Now, for arg(ξ eπ i/4) = 5π i/4, no reliable asymptotic expansion is available, so that from
equation (9.246) 3., p 1094 of [26] we obtain the bona fide leading behavior for ξ � −λ < 0,
namely

D−iλ/2−1(ξ
√

2 eπ i/4) = D−iλ/2−1(|ξ |
√

2 e−3π i/4)

∼
√

2π

�(1 + iλ/2)
(2ξ 2)iλ/4 exp

{
−πλ

8
+

iξ 2

2

}
, (A.24)

D−iλ/2(|ξ |
√

2 e−3π i/4) ∼ (2ξ 2)−iλ/4 exp

{
−3πλ

8
− iξ 2

2

}
.

Of course, the situation becomes exactly time-reversed for the two other linearly independent
solutions: namely, for ξ � λ > 0 we find

D−iλ/2−1(−ξ
√

2 eπ i/4) = D−iλ/2−1(ξ
√

2 e−3π i/4)

∼
√

2π

�(1 + iλ/2)
(2ξ 2)iλ/4 exp

{
−πλ

8
+

iξ 2

2

}
,

(A.25)
D−iλ/2(−ξ

√
2 eπ i/4) = D−iλ/2(ξ

√
2 e−3π i/4)

∼ (2ξ 2)−iλ/4 exp

{
−3πλ

8
− iξ 2

2

}
,

whereas for ξ � −λ < 0 we obtain

D−iλ/2(|ξ |√2 eπ i/4) ∼ (2ξ 2)−iλ/4 eπλ/8 exp{−iξ 2/2}
D−iλ/2−1(|ξ |√2 eπ i/4) ∼ O(ξ−1)

}
(ξ � −λ < 0).

For a given particle momentum px = p, we shall associate the stationary asymptotic phase

px − 1

2
ξ 2(t) = px − 1

2
eEt2 + pt − p2

2eE
(A.26)

with the positive frequency solutions ξ 2(t) which describe a particle, i.e. an electron of
momentum p, while the stationary asymptotic phase

px +
1

2
ξ 2(t) = px +

1

2
eEt2 − pt +

p2

2eE
(A.27)

will describe an antiparticle, i.e. a positron of momentum −p.

23



J. Phys. A: Math. Theor. 42 (2009) 275401 C G Beneventano et al

References

[1] Dunne G V 1999 Topological Aspects of Low Dimensional Systems (Berlin: Springer)
[2] Dittrich W and Gies H 2000 Probing the Vacuum: Perturbative Effective Action Approach in Quantum

Electrodynamics and its Application (Springer Tracts in Modern Physics vol 166) (Berlin, Heidelberg:
Springer)

[3] Raya A and Reyes E 2008 J. Phys. A: Math. Theor. 41 355401
[4] Semenoff G W 1984 Phys. Rev. Lett. 53 2499
[5] DiVincenzo D P and Mele E J 1984 Phys. Rev. B 29 1685
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A

2004 Science 306 666
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and

Firsov A A 2005 Nature 438 197
Zhang Y, Tang Y-W, Stormer H L and Kim P 2005 Nature 438 201

[8] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[9] Beneventano C G, Giacconi P, Santangelo E M and Soldati R 2007 J. Phys. A: Math. Theor. 40 F435

[10] Dowker J S and Critchley R 1976 Phys. Rev. D 13 3224
[11] Cognola G, Elizalde E and Zerbini S 2003 Commun. Math. Phys. 237 507
[12] Beneventano C G and Santangelo E M 2006 J. Phys. A: Math. Gen. 39 7457

Beneventano C G and Santangelo E M 2006 J. Phys. A: Math. Gen. 39 6137
[13] Berry M V 1984 Proc. R. Soc. A 392 45
[14] Beneventano C G and Santangelo E M 2008 J. Phys. A: Math. Theor. 41 164035
[15] Ziegler K 2007 Phys. Rev. B 75 233407
[16] Ludwig A W W, Fisher M P A, Shankar R and Grinstein G 1994 Phys. Rev. B 50 7526

Ziegler K 1997 Phys. Rev. B 55 10661
Ziegler K 1998 Phys. Rev. Lett. 80 3113
Katsnelson M I 2006 Eur. Phys. J. B 51 157
Peres N M R, Guinea F and Neto A H C 2006 Phys. Rev. B 73 125411
Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C 2006 Phys. Rev. Lett. 96 246802
Cserti J 2007 Phys. Rev. B 75 033405
Ostrovsky P M, Gornyi I V and Mirlin A D 2006 Phys. Rev. B 74 235443
Ryu S, Mudry C, Furusaki A and Ludwig A W W 2006 arXiv:cond-mat/0610598
Falkovsky L A and Varlamov A A 2006 arXiv:cond-mat/0606800
Ziegler K 2006 Phys. Rev. Lett. 97 266802
Gusynin V P and Sharapov S G 2002 Phys. Rev. B 66 045108
Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
Gusynin V P and Sharapov S G 2006 Phys. Rev. B 73 245411

[17] Peres N M, Guinea F and Neto A H C 2006 Phys. Rev. B 73 125411
[18] Flekkøy E G and Leinaas J M 1991 Int. J. Mod. Phys. A 6 5327
[19] Deser S, Griguolo L and Seminara D 1998 Phys. Rev. D 57 7444
[20] Forte S 1992 Int. J. Mod. Phys. 7 1025
[21] Zak J 1964 Phys. Rev. 134 A1602

Zak J 1964 Phys. Rev. 134 A1607
[22] Luk’yanchuk I A and Kopelevich Y 2006 Phys. Rev. Lett. 97 256801
[23] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[24] Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim

A K 2006 Nature Phys. 2 177
[25] Nikishov A I 1970 Soviet Phys.—JETP 30 660

Nikishov A I 1969 Transl. Zh. Eksp. Teor. Fiz. 57 1210
Nikishov A I 2003 Transl. Zh. Eksp. Teor. Fiz. 57 1210 (arXiv:hep-th/0207085v2 arXiv:hep-th/0211088v2)

[26] Gradshteyn I S and Ryzhik I M 1996 Table of Integrals, Series, and Products 5th edn ed A Jeffrey (San Diego:
Academic)

[27] Dunne G V 2008 arXiv:0812.3163v1 [hep-th]
[28] Klimenko K G 1992 Z. Phys. C 54 323

Klimenko K G 1992 Theor. Math. Phys. 89 1287
Dittrich W and Gies H 1997 Phys. Lett. B 392 182
Gusynin V P and Shovkovy I A 1999 J. Math. Phys. 40 5406
Lin Q-g 1999 J. Phys. G: Nucl. Part. Phys. 25 17

24

http://dx.doi.org/10.1088/1751-8113/41/35/355401
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevB.29.1685
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1088/1751-8113/40/24/F01
http://dx.doi.org/10.1103/PhysRevD.13.3224
http://dx.doi.org/10.1088/0305-4470/39/23/019
http://dx.doi.org/10.1088/0305-4470/39/21/S04
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1088/1751-8113/41/16/164035
http://dx.doi.org/10.1103/PhysRevB.75.233407
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.55.10661
http://dx.doi.org/10.1103/PhysRevLett.80.3113
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1103/PhysRevB.75.033405
http://dx.doi.org/10.1103/PhysRevB.74.235443
http://www.arxiv.org/abs/cond-mat/0610598
http://www.arxiv.org/abs/cond-mat/0606800
http://dx.doi.org/10.1103/PhysRevLett.97.266802
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevB.73.245411
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1142/S0217751X91002501
http://dx.doi.org/10.1103/PhysRevD.57.7444
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1607
http://dx.doi.org/10.1103/PhysRevLett.97.256801
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1038/nphys245
http://www.arxiv.org/abs/hep-th/0207085v2
http://www.arxiv.org/abs/hep-th/0211088v2
http://www.arxiv.org/abs/0812.3163v1 [hep-th]
http://dx.doi.org/10.1007/BF01566663
http://dx.doi.org/10.1007/BF01017823
http://dx.doi.org/10.1016/S0370-2693(96)01507-9
http://dx.doi.org/10.1063/1.533037
http://dx.doi.org/10.1088/0954-3899/25/1/003


J. Phys. A: Math. Theor. 42 (2009) 275401 C G Beneventano et al

[29] Moroz S 2007 arXiv:0710.4880 [hep-ph]
[30] Allor D, Cohen T D and McGady D A 2008 arXiv:0708.1471v4 [cond-mat.mes-hall]
[31] Itzykson C and Zuber J B 1980 Quantum Field Theory (New York: McGraw-Hill)
[32] Schwinger J 1951 Phys. Rev. 82 664
[33] Gavrilov S P and Gitman D M 1996 Phys. Rev. D 53 7162
[34] Nikishov A I 1970 Nucl. Phys. B 21 346
[35] Abramowitz M and Stegun I A 1978 Handbook of Mathematical Functions with Formulas, Graphs and

Mathematical Tables (New York: Dover)
[36] Gamboa Saravı́ R E, Muschietti M A, Schaposnik F A and Solomin J E 1985 J. Math. Phys. 26 2045
[37] Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530

25

http://www.arxiv.org/abs/0710.4880 [hep-ph]
http://www.arxiv.org/abs/0708.1471v4 [cond-mat.mes-hall]
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevD.53.7162
http://dx.doi.org/10.1063/1.526877
http://dx.doi.org/10.1126/science.1144359

	1. Introduction
	2. Dirac field interacting with a constant magnetic background at zero temperature
	3. Dirac field interacting with a constant magnetic background, at finite temperature and density
	4. The effective action. Invariance under large gauge transformations in the case of a complex chemical potential
	5. Zero temperature limit
	6. Spinors in a constant electric field pair production at T=0
	7. Dirac field interacting with a constant electric background at finite temperature and density
	8. Minimal quantum conductivity of graphene from planar QED
	9. Conclusions
	Acknowledgments
	Appendix. Parabolic cylinder functions
	References

